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Abstract

One paradigm for learning from few labeled examples while making best use of
a large amount of unlabeled data is unsupervised pretraining followed by super-
vised fine-tuning. Although this paradigm uses unlabeled data in a task-agnostic
way, in contrast to common approaches to semi-supervised learning for computer
vision, we show that it is surprisingly effective for semi-supervised learning on
ImageNet. A key ingredient of our approach is the use of big (deep and wide)
networks during pretraining and fine-tuning. We find that, the fewer the labels, the
more this approach (task-agnostic use of unlabeled data) benefits from a bigger
network. After fine-tuning, the big network can be further improved and distilled
into a much smaller one with little loss in classification accuracy by using the
unlabeled examples for a second time, but in a task-specific way. The proposed
semi-supervised learning algorithm can be summarized in three steps: unsupervised
pretraining of a big ResNet model using SimCLRv2, supervised fine-tuning on a
few labeled examples, and distillation with unlabeled examples for refining and
transferring the task-specific knowledge. This procedure achieves 73.9% ImageNet
top-1 accuracy with just 1% of the labels (≤13 labeled images per class) using
ResNet-50, a 10× improvement in label efficiency over the previous state-of-the-
art. With 10% of labels, ResNet-50 trained with our method achieves 77.5% top-1
accuracy, outperforming standard supervised training with all of the labels. 1

1 Introduction
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Figure 1: Bigger models yield
larger gains when fine-tuning
with fewer labeled examples.
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Figure 2: Top-1 accuracy of previous state-of-the-art (SOTA) meth-
ods [1, 2] and our method (SimCLRv2) on ImageNet using only 1%
or 10% of the labels. Dashed line denotes fully supervised ResNet-50
trained with 100% of labels. Full comparisons in Table 3.

Learning from just a few labeled examples while making best use of a large amount of unlabeled
data is a long-standing problem in machine learning. One approach to semi-supervised learning
involves unsupervised or self-supervised pretraining, followed by supervised fine-tuning [3, 4]. This
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1Code and pretrained checkpoints are available at https://github.com/google-research/simclr.
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approach leverages unlabeled data in a task-agnostic way during pretraining, as the supervised labels
are only used during fine-tuning. Although it has received little attention in computer vision, this
approach has become predominant in natural language processing, where one first trains a large
language model on unlabeled text (e.g., Wikipedia), and then fine-tunes the model on a few labeled
examples [5–10]. An alternative approach, common in computer vision, directly leverages unlabeled
data during supervised learning, as a form of regularization. This approach uses unlabeled data in a
task-specific way to encourage class label prediction consistency on unlabeled data among different
models [11, 12, 2] or under different data augmentations [13–15].

Motivated by recent advances in self-supervised learning of visual representations [16–20, 1], this
paper first presents a thorough investigation of the “unsupervised pretrain, supervised fine-tune”
paradigm for semi-supervised learning on ImageNet [21]. During self-supervised pretraining, images
are used without class labels (in a task-agnostic way), hence the representations are not directly
tailored to a specific classification task. With this task-agnostic use of unlabeled data, we find that
network size is important: Using a big (deep and wide) neural network for self-supervised pretraining
and fine-tuning greatly improves accuracy. In addition to the network size, we characterize a few
important design choices for contrastive representation learning that benefit supervised fine-tuning
and semi-supervised learning.

Once a convolutional network is pretrained and fine-tuned, we find that its task-specific predictions
can be further improved and distilled into a smaller network. To this end, we make use of unlabeled
data for a second time to encourage the student network to mimic the teacher network’s label
predictions. Thus, the distillation [22, 23] phase of our method using unlabeled data is reminiscent of
the use of pseudo labels [11] in self-training [24, 12], but without much extra complexity.

In summary, the proposed semi-supervised learning framework comprises three steps as shown in Fig-
ure 3: (1) unsupervised or self-supervised pretraining, (2) supervised fine-tuning, and (3) distillation
using unlabeled data. We develop an improved variant of a recently proposed contrastive learning
framework, SimCLR [1], for unsupervised pretraining of a ResNet architecture [25]. We call this
framework SimCLRv2. We assess the effectiveness of our method on ImageNet ILSVRC-2012 [21]
with only 1% and 10% of the labeled images available. Our main findings and contributions can be
summarized as follows:

• Our empirical results suggest that for semi-supervised learning (via the task-agnostic use of
unlabeled data), the fewer the labels, the more it is possible to benefit from a bigger model
(Figure 1). Bigger self-supervised models are more label efficient, performing significantly
better when fine-tuned on only a few labeled examples, even though they have more capacity to
potentially overfit.

• We show that although big models are important for learning general (visual) representations, the
extra capacity may not be necessary when a specific target task is concerned. Therefore, with
the task-specific use of unlabeled data, the predictive performance of the model can be further
improved and transferred into a smaller network.

• We further demonstrate the importance of the nonlinear transformation (a.k.a. projection head)
after convolutional layers used in SimCLR for semi-supervised learning. A deeper projection head
not only improves the representation quality measured by linear evaluation, but also improves
semi-supervised performance when fine-tuning from a middle layer of the projection head.

We combine these findings to achieve a new state-of-the-art in semi-supervised learning on ImageNet
as summarized in Figure 2. Under the linear evaluation protocol, SimCLRv2 achieves 79.8% top-1
accuracy, a 4.3% relative improvement over the previous state-of-the-art [1]. When fine-tuned on
only 1% / 10% of labeled examples and distilled to the same architecture using unlabeled examples, it
achieves 76.6% / 80.9% top-1 accuracy, which is a 21.6% / 8.7% relative improvement over previous
state-of-the-art. With distillation, these improvements can also be transferred to smaller ResNet-50
networks to achieve 73.9% / 77.5% top-1 accuracy using 1% / 10% of labels. By comparison, a
standard supervised ResNet-50 trained on all of labeled images achieves a top-1 accuracy of 76.6%.

2 Method

Inspired by the recent successes of learning from unlabeled data [19, 20, 1, 11, 24, 12], the proposed
semi-supervised learning framework leverages unlabeled data in both task-agnostic and task-specific
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Figure 3: The proposed semi-supervised learning framework leverages unlabeled data in two ways:
(1) task-agnostic use in unsupervised pretraining, and (2) task-specific use in self-training / distillation.

ways. The first time the unlabeled data is used, it is in a task-agnostic way, for learning general
(visual) representations via unsupervised pretraining. The general representations are then adapted
for a specific task via supervised fine-tuning. The second time the unlabeled data is used, it is in a
task-specific way, for further improving predictive performance and obtaining a compact model. To
this end, we train student networks on the unlabeled data with imputed labels from the fine-tuned
teacher network. Our method can be summarized in three main steps: pretrain, fine-tune, and then
distill. The procedure is illustrated in Figure 3. We introduce each specific component in detail below.

Self-supervised pretraining with SimCLRv2. To learn general visual representations effectively
with unlabeled images, we adopt and improve SimCLR [1], a recently proposed approach based
on contrastive learning. SimCLR learns representations by maximizing agreement [26] between
differently augmented views of the same data example via a contrastive loss in the latent space. More
specifically, given a randomly sampled mini-batch of images, each image xi is augmented twice
using random crop, color distortion and Gaussian blur, creating two views of the same example
x2k−1 and x2k. The two images are encoded via an encoder network f(·) (a ResNet [25]) to generate
representations h2k−1 and h2k. The representations are then transformed again with a non-linear
transformation network g(·) (a MLP projection head), yielding z2k−1 and z2k that are used for the
contrastive loss. With a mini-batch of augmented examples, the contrastive loss between a pair of
positive example i, j (augmented from the same image) is given as follows:

`NT-Xent
i,j = − log

exp(sim(zi, zj)/τ)∑2N
k=1 1[k 6=i] exp(sim(zi, zk)/τ)

, (1)

Where sim(·, ·) is cosine similarity between two vectors, and τ is a temperature scalar.

In this work, we propose SimCLRv2, which improves upon SimCLR [1] in three major ways. Below
we summarize the changes as well as their improvements of accuracy on Imagenet ILSVRC-2012 [21].

1. To fully leverage the power of general pretraining, we explore larger ResNet models. Unlike
SimCLR [1] and other previous work [27, 20], whose largest model is ResNet-50 (4×), we train
models that are deeper but less wide. The largest model we train is a 152-layer ResNet [25] with
3× wider channels and selective kernels (SK) [28], a channel-wise attention mechanism that
improves the parameter efficiency of the network. By scaling up the model from ResNet-50 to
ResNet-152 (3×+SK), we obtain a 29% relative improvement in top-1 accuracy when fine-tuned
on 1% of labeled examples.

2. We also increase the capacity of the non-linear network g(·) (a.k.a. projection head), by making it
deeper.2 Furthermore, instead of throwing away g(·) entirely after pretraining as in SimCLR [1],

2In our experiments, we set the width of projection head’s middle layers to that of its input, so it is also
adjusted by the width multiplier. However, a wider projection head improves performance even when the base
network remains narrow.
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we fine-tune from a middle layer (detailed later). This small change yields a significant improve-
ment for both linear evaluation and fine-tuning with only a few labeled examples. Compared to
SimCLR with 2-layer projection head, by using a 3-layer projection head and fine-tuning from the
1st layer of projection head, it results in as much as 14% relative improvement in top-1 accuracy
when fine-tuned on 1% of labeled examples (see Figure E.1).

3. Motivated by [29], we also incorporate the memory mechanism from MoCo [20], which designates
a memory network (with a moving average of weights for stabilization) whose output will be
buffered as negative examples. Since our training is based on large mini-batch which already
supplies many contrasting negative examples, this change yields an improvement of ∼1% for
linear evaluation as well as when fine-tuning on 1% of labeled examples (see Appendix D).

Fine-tuning. Fine-tuning is a common way to adapt the task-agnostically pretrained network for a
specific task. In SimCLR [1], the MLP projection head g(·) is discarded entirely after pretraining,
while only the ResNet encoder f(·) is used during the fine-tuning. Instead of throwing it all away, we
propose to incorporate part of the MLP projection head into the base encoder during the fine-tuning.
In other words, we fine-tune the model from a middle layer of the projection head, instead of the
input layer of the projection head as in SimCLR. Note that fine-tuning from the first layer of the
MLP head is the same as adding an fully-connected layer to the base network and removing an
fully-connected layer from the head, and the impact of this extra layer is contingent on the amount of
labeled examples during fine-tuning (as shown in our experiments).

Self-training / knowledge distillation via unlabeled examples. To further improve the network for
the target task, here we leverage the unlabeled data directly for the target task. Inspired by [23, 11,
22, 24, 12], we use the fine-tuned network as a teacher to impute labels for training a student network.
Specifically, we minimize the following distillation loss where no real labels are used:

Ldistill = −
∑
xi∈D

[∑
y

PT (y|xi; τ) logP
S(y|xi; τ)

]
(2)

where P (y|xi) = exp(f task(xi)[y]/τ)/
∑

y′ exp(f task(xi)[y
′]/τ), and τ is a scalar temperature

parameter. The teacher network, which produces PT (y|xi), is fixed during the distillation; only the
student network, which produces PS(y|xi), is trained.

While we focus on distillation using only unlabeled examples in this work, when the number of
labeled examples is significant, one can also combine the distillation loss with ground-truth labeled
examples using a weighted combination

L = −(1− α)
∑

(xi,yi)∈DL

[
logPS(yi|xi)

]
− α

∑
xi∈D

[∑
y

PT (y|xi; τ) logP
S(y|xi; τ)

]
. (3)

This procedure can be performed using students either with the same model architecture (self-
distillation), which further improves the task-specific performance, or with a smaller model architec-
ture, which leads to a compact model.

3 Empirical Study

3.1 Settings and Implementation Details

Following the semi-supervised learning setting in [30, 19, 1], we evaluate the proposed method
on ImageNet ILSVRC-2012 [21]. While all ∼1.28 million images are available, only a randomly
sub-sampled 1% (12811) or 10% (128116) of images are associated with labels.3 As in previous
work, we also report performance when training a linear classifier on top of a fixed representation
with all labels [31, 16, 17, 1] to directly evaluate SimCLRv2 representations. We use the LARS
optimizer [32] (with a momentum of 0.9) throughout for pretraining, fine-tuning and distillation.

For pretraining, similar to [1], we train our model on 128 Cloud TPUs, with a batch size of 4096 and
global batch normalization [33], for total of 800 epochs. The learning rate is linearly increased for
the first 5% of epochs, reaching maximum of 6.4 (= 0.1× sqrt(BatchSize)), and then decayed with
a cosine decay schedule. A weight decay of 1e−4 is used. We use a 3-layer MLP projection head on

3See https://www.tensorflow.org/datasets/catalog/imagenet2012_subset for the details of the 1%/10% subsets.
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Table 1: Top-1 accuracy of fine-tuning SimCLRv2 models (on varied label fractions) or training a
linear classifier on the representations. The supervised baselines are trained from scratch using all
labels in 90 epochs. The parameter count only include ResNet up to final average pooling layer. For
fine-tuning results with 1% and 10% labeled examples, the models include additional non-linear
projection layers, which incurs additional parameter count (4M for 1× models, and 17M for 2×
models). See Table H.1 for Top-5 accuracy.

Depth Width Use SK [28] Param (M) Fine-tuned on Linear eval Supervised1% 10% 100%

50
1× False 24 57.9 68.4 76.3 71.7 76.6

True 35 64.5 72.1 78.7 74.6 78.5

2× False 94 66.3 73.9 79.1 75.6 77.8
True 140 70.6 77.0 81.3 77.7 79.3

101
1× False 43 62.1 71.4 78.2 73.6 78.0

True 65 68.3 75.1 80.6 76.3 79.6

2× False 170 69.1 75.8 80.7 77.0 78.9
True 257 73.2 78.8 82.4 79.0 80.1

152
1× False 58 64.0 73.0 79.3 74.5 78.3

True 89 70.0 76.5 81.3 77.2 79.9

2× False 233 70.2 76.6 81.1 77.4 79.1
True 354 74.2 79.4 82.9 79.4 80.4

152 3× True 795 74.9 80.1 83.1 79.8 80.5

top of a ResNet encoder. The memory buffer is set to 64K, and exponential moving average (EMA)
decay is set to 0.999 according to [20]. We use the same set of simple augmentations as SimCLR [1],
namely random crop, color distortion, and Gaussian blur.

For fine-tuning, by default we fine-tune from the first layer of the projection head for 1%/10% of
labeled examples, but from the input of the projection head when 100% labels are present. We use
global batch normalization, but we remove weight decay, learning rate warmup, and use a much
smaller learning rate, i.e. 0.16 (= 0.005× sqrt(BatchSize)) for standard ResNets [25], and 0.064
(= 0.002× sqrt(BatchSize)) for larger ResNets variants (with width multiplier larger than 1 and/or
SK [28]). A batch size of 1024 is used. Similar to [1], we fine-tune for 60 epochs with 1% of labels,
and 30 epochs with 10% of labels, as well as full ImageNet labels.

For distillation, we only use unlabeled examples, unless otherwise specified. We consider two types
of distillation: self-distillation where the student has the same model architecture as the teacher
(excluding projection head), and big-to-small distillation where the student is a much smaller network.
We set temperature to 0.1 for self-distillation, and 1.0 for large-to-small distillation (though the effect
of temperatures between 0.1 and 1 is very small). We use the same learning rate schedule, weight
decay, batch size as pretraining, and the models are trained for 400 epochs. Only random crop and
horizontal flips of training images are applied during fine-tuning and distillation.

3.2 Bigger Models Are More Label-Efficient

In order to study the effectiveness of big models, we train ResNet models by varying width and depth
as well as whether or not to use selective kernels (SK) [28].4 Whenever SK is used, we also use the
ResNet-D [34] variant of ResNet. The smallest model is the standard ResNet-50, and biggest model
is ResNet-152 (3×+SK).

Table 1 compares self-supervised learning and supervised learning under different model sizes and
evaluation protocols, including both fine-tuning and linear evaluation. We can see that increasing
width and depth, as well as using SK, all improve the performance. These architectural manipulations
have relatively limited effects for standard supervised learning (4% differences in smallest and largest
models), but for self-supervised models, accuracy can differ by as much as 8% for linear evaluation,
and 17% for fine-tuning on 1% of labeled images. We also note that ResNet-152 (3×+SK) is only
marginally better than ResNet-152 (2×+SK), though the parameter size is almost doubled, suggesting
that the benefits of width may have plateaued.

4Although we do not use grouped convolution in this work, we believe it can further improve parameter
efficiency.
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Figure 4: Top-1 accuracy for supervised vs semi-supervised (SimCLRv2 fine-tuned) models of
varied sizes on different label fractions. ResNets with depths of 50, 101, 152, width multiplier of 1×,
2× (w/o SK) are presented here. For supervised models on 1%/10% labels, AutoAugment [35] and
label smoothing [36] are used. Increasing the size of SimCLRv2 models by 10×, from ResNet-50 to
ResNet-152 (2×), improves label efficiency by 10×.

Figure 4 shows the performance as model size and label fraction vary. These results show that bigger
models are more label-efficient for both supervised and semi-supervised learning, but gains appear to
be larger for semi-supervised learning (more discussions in Appendix A). Furthermore, it is worth
pointing out that although bigger models are better, some models (e.g. with SK) are more parameter
efficient than others (Appendix B), suggesting that searching for better architectures is helpful.

3.3 Bigger/Deeper Projection Heads Improve Representation Learning

To study the effects of projection head for fine-tuning, we pretrain ResNet-50 using SimCLRv2
with different numbers of projection head layers (from 2 to 4 fully connected layers), and examine
performance when fine-tuning from different layers of the projection head. We find that using a deeper
projection head during pretraining is better when fine-tuning from the optimal layer of projection
head (Figure 5a), and this optimal layer is typically the first layer of projection head rather than the
input (0th layer), especially when fine-tuning on fewer labeled examples (Figure 5b).
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(a) Effect of projection head’s depth when fine-tuning from optimal middle layer.
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Figure 5: Top-1 accuracy via fine-tuning under different projection head settings and label fractions
(using ResNet-50).

It is also worth noting that when using bigger ResNets, the improvements from having a deeper
projection head are smaller (see Appendix E). In our experiments, wider ResNets also have wider
projection heads, since the width multiplier is applied to both. Thus, it is possible that increasing the
depth of the projection head has limited effect when the projection head is already relatively wide.
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Table 2: Top-1 accuracy of a ResNet-50 trained on different types of targets. For distillation, the
temperature is set to 1.0, and the teacher is ResNet-50 (2×+SK), which gets 70.6% with 1% of the
labels and 77.0% with 10%, as shown in in Table 1. The distillation loss (Eq. 2) does not use label
information. Neither strong augmentation nor extra regularization are used.

Method Label fraction
1% 10%

Label only 12.3 52.0
Label + distillation loss (on labeled set) 23.6 66.2
Label + distillation loss (on labeled+unlabeled sets) 69.0 75.1
Distillation loss (on labeled+unlabeled sets; our default) 68.9 74.3

When varying architecture, the accuracy of fine-tuned models is correlated with the accuracy of
linear evaluation (see Appendix C). Although we use the input of the projection head for linear
classification, we find that the correlation is higher when fine-tuning from the optimal middle layer of
the projection head than when fine-tuning from the projection head input.

3.4 Distillation Using Unlabeled Data Improves Semi-Supervised Learning

Distillation typically involves both a distillation loss that encourages the student to match a teacher
and an ordinary supervised cross-entropy loss on the labels (Eq. 3). In Table 2, we demonstrate the
importance of using unlabeled examples when training with the distillation loss. Furthermore, using
the distillation loss alone (Eq. 2) works almost as well as balancing distillation and label losses (Eq. 3)
when the labeled fraction is small. For simplicity, Eq. 2 is our default for all other experiments.

Distillation with unlabeled examples improves fine-tuned models in two ways, as shown in Figure 6:
(1) when the student model has a smaller architecture than the teacher model, it improves the model
efficiency by transferring task-specific knowledge to a student model, (2) even when the student
model has the same architecture as the teacher model (excluding the projection head after ResNet
encoder), self-distillation can still meaningfully improve the semi-supervised learning performance.
To obtain the best performance for smaller ResNets, the big model is self-distilled before distilling it
to smaller models.
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Figure 6: Top-1 accuracy of distilled SimCLRv2 models compared to the fine-tuned models as well
as supervised learning with all labels. The self-distilled student has the same ResNet as the teacher
(without MLP projection head). The distilled student is trained using the self-distilled ResNet-152
(2×+SK) model, which is the largest model included in this figure.

We compare our best models with previous state-of-the-art semi-supervised learning methods (and a
concurrent work [43]) on ImageNet in Table 3. Our approach greatly improves upon previous results,
for both small and big ResNet variants.
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Table 3: ImageNet accuracy of models trained under semi-supervised settings. For our methods,
we report results with distillation after fine-tuning. For our smaller models, we use self-distilled
ResNet-152 (3×+SK) as the teacher.

Method Architecture
Top-1 Top-5

Label fraction Label fraction
1% 10% 1% 10%

Supervised baseline [30] ResNet-50 25.4 56.4 48.4 80.4

Methods using unlabeled data in a task-specific way:
Pseudo-label [11, 30] ResNet-50 - - 51.6 82.4
VAT+Entropy Min. [37, 38, 30] ResNet-50 - - 47.0 83.4
Mean teacher [39] ResNeXt-152 - - - 90.9
UDA (w. RandAug) [14] ResNet-50 - 68.8 - 88.5
FixMatch (w. RandAug) [15] ResNet-50 - 71.5 - 89.1
S4L (Rot+VAT+Entropy Min.) [30] ResNet-50 (4×) - 73.2 - 91.2
MPL (w. RandAug) [2] ResNet-50 - 73.8 - -
CowMix [40] ResNet-152 - 73.9 - 91.2

Methods using unlabeled data in a task-agnostic way:
InstDisc [17] ResNet-50 - - 39.2 77.4
BigBiGAN [41] RevNet-50 (4×) - - 55.2 78.8
PIRL [42] ResNet-50 - - 57.2 83.8
CPC v2 [19] ResNet-161(∗) 52.7 73.1 77.9 91.2
SimCLR [1] ResNet-50 48.3 65.6 75.5 87.8
SimCLR [1] ResNet-50 (2×) 58.5 71.7 83.0 91.2
SimCLR [1] ResNet-50 (4×) 63.0 74.4 85.8 92.6
BYOL [43] (concurrent work) ResNet-50 53.2 68.8 78.4 89.0
BYOL [43] (concurrent work) ResNet-200 (2×) 71.2 77.7 89.5 93.7

Methods using unlabeled data in both ways:
SimCLRv2 distilled (ours) ResNet-50 73.9 77.5 91.5 93.4
SimCLRv2 distilled (ours) ResNet-50 (2×+SK) 75.9 80.2 93.0 95.0
SimCLRv2 self-distilled (ours) ResNet-152 (3×+SK) 76.6 80.9 93.4 95.5

4 Related work

Task-agnostic use of unlabeled data. Unsupervised or self-supervised pretraining followed by
supervised fine-tuning on a few labeled examples has been extensively used in natural language
processing [6, 5, 7–9], but has only shown promising results in computer vision very recently [19,
20, 1]. Our work builds upon recent success on contrastive learning of visual representations [44, 16,
17, 45, 18, 19, 46, 42, 20, 47, 48, 1], a sub-area within self-supervised learning. These contrastive
learning based approaches learn representations in a discriminative fashion instead of a generative
one as in [3, 49, 50, 41, 51]. There are other approaches to self-supervised learning that are based
on handcrafted pretext tasks [52, 31, 53, 54, 27, 55]. We also note a concurrent work on advancing
self-supervised pretraining without using negative examples [43], which we also compare against
in Table 3. Our work also extends the “unsupervised pretrain, supervised fine-tune” paradigm by
combining it with (self-)distillation [23, 22, 11] using unlabeled data.

Task-specific use of unlabeled data. Aside from the representation learning paradigm, there is a
large and diverse set of approaches for semi-supervised learning, we refer readers to [56–58] for
surveys of classical approaches. Here we only review methods closely related to ours (especially
within computer vision). One family of highly relevant methods are based on pseudo-labeling [11, 15]
or self-training [12, 24, 59]. The main differences between these methods and ours are that our
initial / teacher model is trained using SimCLRv2 (with unsupervised pretraining and supervised
fine-tuning), and the student models can also be smaller than the initial / teacher model. Furthermore,
we use temperature scaling instead of confidence-based thresholding, and we do not use strong
augmentation for training the student. Another family of methods are based on label consistency
regularization [60–62, 39, 14, 13, 63, 15], where unlabeled examples are directly used as a regularizer
to encourage task prediction consistency. Although in SimCLRv2 pretraining, we maximize the
agreement/consistency of representations of the same image under different augmented views, there
is no supervised label utilized to compute the loss, a crucial difference from label consistency losses.

8



5 Discussion

In this work, we present a simple framework for semi-supervised ImageNet classification in three
steps: unsupervised pretraining, supervised fine-tuning, and distillation with unlabeled data. Although
similar approaches are common in NLP, we demonstrate that this approach can also be a surprisingly
strong baseline for semi-supervised learning in computer vision, outperforming the state-of-the-art
by a large margin.

We observe that bigger models can produce larger improvements with fewer labeled examples. We
primarily study this phenomenon on ImageNet, but we observe similar results on CIFAR-10, a
much smaller dataset (see appendix G). The effectiveness of big models have been demonstrated on
supervised learning [64–67], fine-tuning supervised models on a few examples [68], and unsupervised
learning on language [9, 69, 10, 70]. However, it is still somewhat surprising that bigger models,
which could easily overfit with few labeled examples, can generalize much better. With task-agnostic
use of unlabeled data, we conjecture bigger models can learn more general features, which increases
the chances of learning task-relevant features. However, further work is needed to gain a better
understanding of this phenomenon. Beyond model size, we also see the importance of increasing
parameter efficiency as the other important dimension of improvement.

Although big models are important for pretraining and fine-tuning, given a specific task, such
as classifying images into 1000 ImageNet classes, we demonstrate that task-agnostically learned
general representations can be distilled into a more specialized and compact network using unlabeled
examples. We simply use the teacher to impute labels for the unlabeled examples for this purpose,
without using noise, augmentation, confidence thresholding, or consistency regularization. When
the student network has the same or similar architecture as the teacher, this process can consistently
improve the classification performance. We believe our framework can benefit from better approaches
to leverage the unlabeled data for improving and transferring task-specific knowledge. We also
recognize that ImageNet is a well-curated dataset, and may not reflect all real-world applications of
semi-supervised learning. Thus, a potential future direction is to explore wider range of real datasets.

6 Broader Impact

The findings described in this paper can potentially be harnessed to improve accuracy in any ap-
plication of computer vision where it is more expensive or difficult to label additional data than
to train larger models. Some such applications are clearly beneficial to society. For example, in
medical applications where acquiring high-quality labels requires careful annotation by clinicians,
better semi-supervised learning approaches can potentially help save lives. Applications of computer
vision to agriculture can increase crop yields, which may help to improve the availability of food.
However, we also recognize that our approach could become a component of harmful surveillance
systems. Moreover, there is an entire industry built around human labeling services, and technology
that reduces the need for these services could lead to a short-term loss of income for some of those
currently employed or contracted to provide labels.
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A When Do Bigger Models Help More?

Figure A.1 shows relative improvement by increasing the model size under different amount of
labeled examples. Both supervised learning and semi-supervised learning (i.e. SimCLRv2) seem to
benefit from having bigger models. The benefits are larger when (1) regularization techniques (such
as augmentation, label smoothing) are used, or (2) the model is pretrained using unlabeled examples.
It is also worth noting that these results may reflect a “ceiling effect”: as the performance gets closer
to the ceiling, the improvement becomes smaller.
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Figure A.1: Relative improvement (top-1) when model size is increased. (a) supervised learn-
ing without extra regularization, (b), Supervised learning with auto-augmentation [35] and label
smoothing [71] are applied for 1%/10% label fractions, (c) semi-supervised learning by fine-tuning
SimCLRv2.

B Parameter Efficiency Also Matters

Figure B.1 shows the top-1 accuracy of fine-tuned SimCLRv2 models of different sizes. It shows
that (1) bigger models are better, but (2) with SK [28], better performance can be achieved with the
same parameter count. It is worth to note that, in this work, we do not leverage group convolution
for SK [28] and we use only 3× 3 kernels. We expect further improvement in terms of parameter
efficiency if group convolution is utilized.
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(a) Models without SK [28]
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Figure B.1: Top-1 accuracy of fined-tuned SimCLRv2 models of different sizes on three label
fractions. ResNets with depth in {50, 101, 152}, width in {1×, 2×} are included here. Parameter
efficiency also plays an important role. For fine-tuning on 1% of labels, SK is much more efficient.

C The Correlation Between Linear Evaluation and Fine-tuning

Most existing work [17, 19, 18, 42, 20, 1] on self-supervised learning leverages linear evaluation
as a main metric for evaluating representation quality, and it is not clear how it correlates with
semi-supervised learning through fine-tuning. Here we further study the correlation of fine-tuning
and linear evaluation (the linear classifier is trained on the ResNet output instead of some middle
layer of projection head). Figure C.1 shows the correlation under two different fine-tuning strategies:
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fine-tuning from the input of projection head, or fine-tuning from a middle layer of projection head.
We observe that overall there is a linear correlation. When fine-tuned from a middle layer of the
projection head, we observe a even stronger linear correlation. Additionally, we notice the slope of
correlation becomes smaller as number of labeled images for fine-tuning increases .
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Figure C.1: The effects of projection head for the correlation between fine-tuning and linear
evaluation. When allowing fine-tuning from the middle of the projection head, the linear correlation
becomes stronger. Furthermore, as label fraction increases, the slope is decreasing. The points here
are from the variants of ResNets with depth in {50, 101, 152}, width in {1×, 2×}, and with/without
SK.

D The Impact of Memory

Figure D.1 shows the top-1 comparisons for SimCLRv2 models trained with or without memory
(MoCo) [20]. Memory provides modest advantages in terms of linear evaluation and fine-tuning with
1% of the labels; the improvement is around 1%. We believe the reason that memory only provides
marginal improvement is that we already use a big batch size (i.e. 4096).

45 50 55 60 65
Top-1 (w/o memory)

45

50

55

60

65

To
p-

1 
(w

/ m
em

or
y)

(a) F-T on 1% subset

65 70 75
Top-1 (w/o memory)

65

70

75

(b) F-T on 10% subset

74 76 78 80
Top-1 (w/o memory)

74

76

78

80
(c) F-T on full ImageNet

70 72 74 76
Top-1 (w/o memory)

70

72

74

76
(d) Linear eval

Figure D.1: Top-1 results of ResNet-50, ResNet-101, and ResNet-152 trained with or without
memory.

E The Impact of Projection Head Under Different Model Sizes

To understand the effects of projection head settings across model sizes, Figure E.1 shows effects
of fine-tuning from different layers of 2- and 3-layer projection heads. These results confirm that
with only a few labeled examples, pretraining with a deeper projection head and fine-tuning from a
middle layer can improve the semi-supervised learning performance. The improvement is larger with
a smaller model size.
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Figure E.1: Top-1 fine-tuning performance under different projection head settings (number of
layers included for fine-tuning) and model sizes. With fewer labeled examples, fine-tuning from the
first layer of a 3-layer projection head is better, especially when the model is small. Points reflect
ResNets with depths of {50, 101, 152} and width multipliers of {1×, 2×}. Networks in the first row
are without SK, and in the second row are with SK.

Figure E.2 shows fine-tuning performance for different projection head settings of a ResNet-50
pretrained using SimCLRv2. Figure 5 in the main text is an aggregation of results from this Figure.

0 1 2
40

50

60

To
p-

1 
(%

)
 (L

ab
el

 se
t: 

1%
) 2 layers of proj head

0 1 2 3
40

50

60
3 layers of proj head

0 1 2 3 4
40

50

60
4 layers of proj head

0 1 255

60

65

70

To
p-

1 
(%

)
 (L

ab
el

 se
t: 

10
%

)

0 1 2 355

60

65

70

0 1 2 3 455

60

65

70

0 1 265

70

75

80

To
p-

1 
(%

)
 (L

ab
el

 se
t: 

10
0%

)

0 1 2 3
Fine-tuning from which layer of projection head

65

70

75

80

0 1 2 3 465

70

75

80

Figure E.2: Top-1 accuracy of ResNet-50 with different projection head settings. Deeper projection
head help more, when allowing to fine-tune from a middle layer of the projection head.

F Further Distillation Ablations

Figure F.1 shows the impact of distillation weight (α) in Eq. 3, and temperature used for distillation.
We see distillation without actual labels (i.e. distillation weight is 1.0) works on par with distillation
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with actual labels. Furthermore, temperature of 0.1 and 1.0 work similarly, but 2.0 is significantly
worse. For our distillation experiments in this work, we by default use a temperature of 0.1 when the
teacher is a fine-tuned model, otherwise 1.0.
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Figure F.1: Top-1 accuracy with different distillation weight (α), and temperature (τ ).

We further study the distillation performance with teachers that are fine-tuned using different pro-
jection head settings. More specifically, we pretrain two ResNet-50 (2×+SK) models, with two
or three layers of projection head, and fine-tune from a middle layer. This gives us five different
teachers, corresponding to different projection head settings. Unsurprisingly, as shown in Figure F.2,
distillation performance is strongly correlated with the top-1 accuracy of fine-tuned teacher. This
suggests that a better fine-tuned model (measured by its top-1 accuracy), regardless their projection
head settings, is a better teacher for transferring task specific knowledge to the student using unlabeled
data.
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Figure F.2: The strong correlation between teacher’s task performance and student’s task perfor-
mance.

G CIFAR-10

We perform main experiments on ImageNet since it is a large-scale and well studied dataset. Here we
conduct similar experiments on small-scaled CIFAR-10 dataset to test our findings in ImageNet. More
specifically, we pretrain ResNets on CIFAR-10 without labels following [1] 5. The ResNet variants
we trained are of 6 depths, namely 18, 34, 50, 101, 152 and 200. To keep experiments tractable, by
default we use Selective Kernel, and a width multiplier of 1×. After the models are pretrained, we
then fine-tune them (using simple augmentations of random crop and horizontal flipping) on different
numbers of labeled examples (250, 4000, and total of 5000 labeled examples), following MixMatch’s
protocol and running on 5 seeds.

The fine-tuning performances are shown in the Figure G.1, and suggest similar trends to our results on
ImageNet: big pretrained models can perform well, often better, with a few labeled examples. These

5For CIFAR-10, we do not find it beneficial to have a 3-layer projection head, nor using a EMA network.
However, we expand augmentations in [1] with a broader set of color operators and Sobel filtering for pretraining.
We pretrain it for 800 epochs, with a batch size of 512 and temperature of 0.2.

17



20 40 60 80 100
Number of parameters (million)

82

84

86

88

90

92

94

96

98

To
p-

1 
ac

cu
ra

cy
 (%

)

Labels
250
4000
50000

Figure G.1: Fine-tuning pre-trained ResNets on CIFAR-10.

results can be further improved with better augmentations during fine-tuning and an extra distillation
step. The linear evaluation also improves with a bigger network. Our best result is 96.4% obtained
from ResNet-101 (+SK) and ResNet-152 (+SK), but it is slightly worse (96.2%) with ResNet-200
(+SK).

H Extra Results

Table H.1 shows top-5 accuracy of the fine-tuned SimCLRv2 (under different model sizes) on
ImageNet.

Table H.1: Top-5 accuracy of fine-tuning SimCLRv2 (on varied label fractions) or training a linear
classifier on the ResNet output. The supervised baselines are trained from scratch using all labels
in 90 epochs. The parameter count only include ResNet up to final average pooling layer. For
fine-tuning results with 1% and 10% labeled examples, the models include additional non-linear
projection layers, which incurs additional parameter count (4M for 1× models, and 17M for 2×
models).

Depth Width Use SK [28] Param (M) Fine-tuned on Linear eval Supervised1% 10% 100%

50
1× False 24 82.5 89.2 93.3 90.4 93.3

True 35 86.7 91.4 94.6 92.3 94.2

2× False 94 87.4 91.9 94.8 92.7 93.9
True 140 90.2 93.7 95.9 93.9 94.5

101
1× False 43 85.2 90.9 94.3 91.7 93.9

True 65 89.2 93.0 95.4 93.1 94.8

2× False 170 88.9 93.2 95.6 93.4 94.4
True 257 91.6 94.5 96.4 94.5 95.0

152
1× False 58 86.6 91.8 94.9 92.4 94.2

True 89 90.0 93.7 95.9 93.6 95.0

2× False 233 89.4 93.5 95.8 93.6 94.5
True 354 92.1 94.7 96.5 94.7 95.0

152 3× True 795 92.3 95.0 96.6 94.9 95.1
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