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Abstract
Deep learning has seen a movement away from
representing examples with a monolithic hidden
state towards a richly structured state. For ex-
ample, Transformers segment by position, and
object-centric architectures decompose images
into entities. In all these architectures, interactions
between different elements are modeled via pair-
wise interactions: Transformers make use of self-
attention to incorporate information from other
positions; object-centric architectures make use
of graph neural networks to model interactions
among entities. However, pairwise interactions
may not achieve global coordination or a coher-
ent, integrated representation that can be used
for downstream tasks. In cognitive science, a
global workspace architecture has been proposed
in which functionally specialized components
share information through a common, bandwidth-
limited communication channel. We explore the
use of such a communication channel in the con-
text of deep learning for modeling the structure
of complex environments. The proposed method
includes a shared workspace through which com-
munication among different specialist modules
takes place but due to limits on the communica-
tion bandwidth, specialist modules must compete
for access. We show that capacity limitations
have a rational basis in that (1) they encourage
specialization and compositionality and (2) they
facilitate the synchronization of otherwise inde-
pendent specialists.

1. Introduction
Deep Learning has seen a movement towards more struc-
tured models with cleaner separation between different
pieces of information often handled by different compo-
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nents. The induced structure, and separation of knowledge
has improved generalization, model-size scaling, and long-
range dependencies (Berner et al., 2019; Vinyals et al., 2019;
Brown et al., 2020). This opens up questions about how to
achieve coherence and coordination between different com-
ponents in such architectures. Looking back to the 1980s,
the focus in AI was much less on learning and more on
constructing articulated, multi-component architectures and
examining how intelligence might emerge from interactions
among this collection of simple, functionally specialized
components (Fodor, 1983; Braitenberg, 1986; Minsky, 1988;
Brooks, 1991). Each of these specialist modules is on the
scale of a typical component of a computer program, like
a subroutine that implements a narrow, prespecified func-
tion from certain input contents to certain output contents.1

Through appropriate communication and coordination, a set
of specialists can achieve complex, dynamic, and flexible
behavior patterns.

As a concrete illustration, consider the task of driving a
car in terms of specialists. One specialist might monitor
the position of the car with respect to lines on the road,
and another specialist might adjust the steering direction
based on the perceptual data. In addition, there might be
specialists which provide alerts when certain events occur,
such as loud sounds, reaching a critical intersection on a
route, or coming into close proximity to the car in front.
To execute the task of driving the car properly, all these
specialists need to interact coherently and broadcast their
individual information to each other.

Arguably, modern ML and AI has yet to develop broad
architectural frameworks for learning both the specialist
modules and how they should interact, while the classical
view lacks an articulate story about how learning could take
place successfully in such frameworks. In this article, we re-
visit this classical view with modern machine learning tools
based on end-to-end learning and differentiable memory and
attention mechanisms. Inspired by the Global Workspace
Theory (Baars, 1993; Dehaene et al., 1998; Shanahan &
Baars, 2005; Shanahan, 2006; 2010; 2012; Dehaene et al.,
2017) from cognitive neuroscience, we argue that flexibility

1In the literature, specialists are sometimes referred to as pro-
cesses or agents.
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Shared Workspace

1. Parallel, competing specialists 2. Write to shared workspace 3. Broadcast workspace contents

Figure 1. Step 1: an ensemble of specialist modules doing their own default processing; at a particular computational stage, depending
upon the input, a subset of the specialists becomes active. Step 2: the active specialists get to write information in a shared global
workspace. Step 3: the contents of the workspace are broadcast to all specialists.

and generalization emerge through an architecture of spe-
cialists if their training encourages them to communicate
effectively with one another via the bottleneck of a shared
workspace (figure 1).

Distributed specialist modules. From a computational per-
spective, articulated multi-component architectures com-
posed of sparsely interacting specialist modules show desir-
able scaling properties (e.g., more specialists can seamlessly
be added), increased robustness (the system can tolerate the
removal of individual specialists), and efficiency (informa-
tion is processed predominantly locally, reducing the cost of
communication between specialists). However, modulariza-
tion also requires mechanisms to establish sharing of com-
patible representations across specialists. While portions
of a task might be solved by independent specialists, syn-
chronization is critical particularly when there are statistical,
functional, or causal dependencies among the specialists.

Coherence through a shared workspace. In cognitive
neuroscience, the Global Workspace Theory (GWT) (Baars,
1993; Dehaene et al., 2017) suggests an architecture allow-
ing specialist modules to interact. The key claim of GWT is
the existence of a shared representation—sometimes called
a blackboard, sometimes a workspace—that can be modi-
fied by any specialist and that is broadcast to all specialists,
along with the notion that write access is limited to maintain
coherence. Our interpretation of this restriction on write
access is that it stems from an assumption on the form of the
joint distribution between high-level concepts. In this pa-
per, we explore a communication and coordination scheme
similar to the one proposed by GWT for modern neural net-
work architectures like Transformers (Vaswani et al., 2017;
Dehghani et al., 2018; Parmar et al., 2018; Radford et al.,

2019; Brown et al., 2020) and attention-based modular ar-
chitectures (Goyal et al., 2019; Rahaman et al., 2020; Mittal
et al., 2020; Goyal et al., 2020; Madan et al., 2021).

In terms of our driving example, the workspace could be
used to override default behaviors by giving high priority
to specialist modules which provide alerts of various sorts
(loud sounds, presence of a child on the street), allowing
specialists which respond to such alerts to take control of
behavior over default driving routines. This scenario implies
that prioritization of signals in a shared workspace is critical.

A shared communication channel necessitates common
representations. For a multitude of specialist modules to
cooperate, a common language is necessary (Baars, 1997).
For example, in the driving scenario, alerts may come from
auditory or visual processing specialists, but regardless
of the source, a signal for danger must be placed in the
workspace to override default behavior, whether that behav-
ior is controlled by a radio-tuning specialist or a steering
specialist. Although specialist modules can be pre-wired to
have compatible communication interfaces, we will model
an architecture in which an ensemble of specialist modules
is trained in coordination, which should lead to a shared
language (Colagrosso & Mozer, 2005). Internally, individ-
ual specialists can use whatever form of representations
that serves them, but their inputs and outputs require align-
ment with other specialists in order to synchronize. For
example, an unusual event such as a rough thud under the
wheels might not have been previously experienced, but the
mere signalling of novelty could override default specialists.
Without a global communication channel, specialists would
have to learn to communicate through pairwise interactions,
which might limit coordination of behavior in novel situ-
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ations: global communication ensures exchangeability of
knowledge to achieve systematic generalization.

2. Synchronizing neural modules through a
shared workspace

We investigate a neural architecture reminiscent of the GW
model, where a number of sparsely communicating spe-
cialist modules interact via a shared working memory. In
particular, we extend the Transformer (Vaswani et al., 2017),
attention and slot-based modular architectures (Goyal et al.,
2019) by adding a shared workspace and allowing modules
(each representing an entity) to compete for write access in
each computational stage.

Attention(Q,K, V ) = softmax

(
QKT

√
d

)
V,

Key-value attention. Key-value attention defines the back-
bone of updates to the hidden states in the proposed model.
This form of attention is widely used in self-attention mod-
els and performs well on a wide array of tasks (Bahdanau
et al., 2014; Vaswani et al., 2017; Santoro et al., 2018). Key-
value attention selects an input value based on the match of
a query vector to a key vector associated with each value. To
allow differentiability and thus easier learnability, selection
is soft and computes a convex combination of all the values.
Such a mechanism makes it possible to change on-the-fly
both the source of input and how the shared workspace is
updated. It changes the way to think of the outputs of spe-
cialists and the elements of the memory: they should be
considered as an unordered set of elements to be selected
by an attention mechanism from the contents of specialists.
More precisely, soft attention uses the product of a query
(represented as a matrix Q of dimensionality Nr × d, with
Nr queries, and d the dimension of each query) with a set of
No objects each associated with a key as a row in matrixKT

(No × d). After normalization with a softmax the resulting
convex weights are used to combine the values Vi (row i of
matrix V ): where the softmax is applied to each row of its
argument matrix, yielding a set of convex weights. For our
experiments, we use multihead dot product attention.

Neural modules with pairwise interactions. Our ap-
proach to synchronizing neural modules is highly general
and mostly agnostic to the task, domain, or specific choice of
architecture, with the only requirement being that the model
consists of multiple specialist modules which either operate
independently or have sparse interactions requiring to only
match pairs of modules at a time. Our goal is to explore how
introducing a shared workspace can help these modules to
become better synchronized and coordinated. We show the
utility of the shared workspace for synchronization in (a)
Transformers (Vaswani et al., 2017), in which all interac-

tions between positions are performed via attention, and (b)
slot-based architectures like Recurrent Independent Mech-
anisms or RIMs (Goyal et al., 2019) in which all pairwise
interactions between modules are performed via attention.
In the context of slot-based architectures, each slot’s content
is associated with a specialist module, whereas in Trans-
formers different entities each associated with a different
position acts as a specialist module (figure 2).

Both Transformers and RIMs utilize a self-attention mecha-
nism for sharing information between modules, typically im-
plemented in a pairwise manner, i.e., each specialist attends
to every other specialist. Instead, we facilitate information
sharing among specialist modules through a limited capacity
shared workspace. In this framework at each computational
stage, different specialists compete for write access to the
common workspace. The contents of the workspace, in turn,
are broadcast to all specialist modules simultaneously.

Notation. The input is processed through a sequence of
computational stages indexed by t, and at each stage, ns
entities are operated on (i.e., ns different modules in slot-
based architectures like RIMs or ns different positions in the
case of Transformers). Each of these ns specialist modules
has a distinct internal nh-dimensional state hk

t , for k ∈
{1, ..., ns}. The specialist modules communicate with each
other via a shared workspace divided into nm memory slots,
each consisting of a vector of nl elements, denoted M =
[m1; . . .mj ; . . .mnm

]. The shared workspace is updated
across different computational stages i.e., different time-
steps in recurrent architecture and different layers in the case
of Transformers. At each computational stage t, different
specialists compete for writing in the shared workspace,
but all specialists can read from the current state of the
workspace. In the case of an autoregressive task, we can
restrict the information sharing to previous positions and
keep a separate version of the workspace for each position.

2.1. Specifics of the Shared Workspace.

Step 1: Process Input to obtain an entity representation
for each specialist. The first step is external to the proposed
method, and involves processing the input to form the initial
representation vector for each of the different specialists.
Different common deep learning architectures can be used to
form the representation of different specialists. For example,
Transformers start with a matrix ns × nh whose rows are
initialized as the nh-dimensional embeddings of the input
at each position of the sequence. Slot-Based Recurrent
architectures like RIMs consist of a single-layer recurrent
structure where the hidden state ht at computational stage
t is decomposed into the substates of the ns specialists, hk

t

for k = 1, ...ns.

In the proposed scheme within each computational stage,
the updates of the hidden state of different specialists follow
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Figure 2. Using a Shared Workspace for creating global coherence in RIMs, Transformers, TIMs and Universal Transformers
(UT). (Top Half) All four of these architectures use pairwise communication (using key-value attention) to establish coherence between
individual specialist modules. In the case of RIMs (Goyal et al., 2019) and TIMs (Lamb et al., 2021), these specialists are independent
modules which compete with each other in order to take control over the state update based on a given input. In the case of Transformers
(Vaswani et al., 2017) and Universal Transformers (Dehghani et al., 2018), each specialist is associated with a different position. Activated
specialists are denoted by a blue shade and the intensity depends on the degree of activation. In the case of Universal Transformers,
the state update dynamics for each position is shared across all layers and all positions (denoted by a yellow triangle). (Bottom Half)
We replace pairwise communication with a shared workspace to create global coherence between different specialists. Communication
using the shared workspace is a two-step process (as denoted by 1 and 2 in the figures). In the first step (1), specialists compete for write
access to the shared workspace, resulting in a subset of them being activated (in blue), and only the activated specialists perform the write
operation on the workspace. In the second step (2), the contents of the shared workspace are broadcast to all the specialists.

a two-step process. First, specialists compete and write to a
shared workspace. Second, information from the workspace
gets broadcast to all the specialists, as explained next.

Step 2: Writing Information in the shared workspace.
The specialists compete to write into the shared workspace,
whose contents need to be updated in the context of new
information received from different specialists. This step
ensures that only the critically important signals make it to
the shared workspace and therefore prevents the workspace
from being cluttered. Let matrixR represent the combined
state of all the specialists (i.e. hkt ∀k ∈ {1, . . . , ns} as the
rows ofR). In order to implement the competition between
specialists to write into the workspace, we use a key-query-
value attention mechanism. In this case, the query is a func-
tion of the state of the memory matrixM (with one row per
slot of the memory), i.e Q̃ = MW̃ q . Keys and values are a
function of the information from the specialists i.e., a func-
tion ofR. We apply dot product attention to get the updated
memory matrix: M ← softmax

(
Q̃(RW̃ e)T√

de

)
RW̃ v. The

use of a regular softmax to write into M leads to a stan-
dard soft competition among different specialists to write
in the shared workspace. One can also use a top-k soft-

max (Ke et al., 2018) to select a fixed number of specialists
allowed to write in the shared workspace: based on the pre-
softmax values, a fixed number of k specialists which have
the highest values are selected, and get access to write in
the shared workspace. Selection with a top-k softmax is a
hybrid between hard and soft selection. We denote the set
of thus selected specialists as Ft. We note that we can apply
the attention mechanism multiple times to distill informa-
tion from different specialists into the shared workspace.
Here, the contents of the shared workspace are updated in
the gated way as proposed in RMC (Santoro et al., 2018).
We ask the reader to refer to appendix section C for more
details.

Step 3: Broadcast of information from the shared
workspace. Each specialist then updates its state using
the information broadcast from the shared workspace. We
again utilize an attention mechanism to perform this con-
solidation. All the specialists create queries q̂k = hk

t Ŵ
q,

which are matched with the keys κ̂j = (mjŴ
e)T ∀k ∈

{1, . . . , ns}, j ∈ {1, . . . , nm} from the updated memory
slots, forming attention weights sk,j = softmax

(
q̂kκ̂j√

de

)
.
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The memory slot values generated by each slot of the shared
workspace and the attention weights are then used to up-
date the state of all the specialists: hk

t ← hk
t +

∑
j sk,j v̂j

where v̂j = mjŴ
v ∀k ∈ {1, . . . , ns}. After receiving

the broadcast information from the workspace, each spe-
cialist update their state by applying the dynamics function
i.e., one step update of LSTM or GRU units in the case of
recurrent architectures, and feedforward layer in the case of
Transformers. This yields the new value hk

t+1 for the k-th
specialist, from which we start the next stage (t+ 1).

Persistence of shared workspace throughout an episode.
The shared workspace is written into and its contents are
updated after every stage, i.e., every time-step in a recurrent
network and after every layer in Transformers. The contents
of the shared memory are only reset at the end of an episode
(i.e., at the end of the sequence for RNNs and after the final
layer for Transformers).

Computational Complexity of using shared workspace for
synchronizing different specialists. To encourage a coher-
ent global coordination, Transformers and slot-based re-
current architectures rely on pairwise interactions captured
via an attention mechanism. Unfortunately, such attention
mechanisms scale quadratically with the number of spe-
cialists. Here, we propose a method which uses a shared
workspace to create global coherence between different spe-
cialists and in the process, replaces the pair-wise interactions
of conventional dot-product attention. The computational
complexity of the proposed method is linear in the num-
ber of specialists. In our experimentation, the number of
memory slots is practically constant, which suggests a very
favourable scaling behavior, and certainly much less than
quadratic. As a point of reference, what would correspond
to the number of slots in human working memory (Baars,
1993) is indeed very small (less than 10).

3. Related Work
This work taps into a line of reasoning put forward by his-
torical works, such as (Minsky, 1988; Braitenberg, 1986;
Fodor, 1983), wherein it is argued that in order to be able
to deal with a wide spectrum of conditions and tasks, an
intelligent system should be comprised of many interacting
specialized modules or programs, rather than a single “one-
size-fits-all” entity. While modular architectures have been
the subject of a number of research directions, (Jacobs et al.,
1991; Bottou & Gallinari, 1991; Ronco et al., 1997; Reed
& De Freitas, 2015; Andreas et al., 2016; Rosenbaum et al.,
2017; Fernando et al., 2017; Shazeer et al., 2017; Rosen-
baum et al., 2019; Goyal & Bengio, 2020), we focus here on
a mechanism for achieving coherence and synchronization
between specialist modules via a global workspace shared
between all specialists.

Prior works have explored incorporating slot-based mem-
ory in the context of recurrent neural networks (Graves
et al., 2014; 2016; Santoro et al., 2018). In the context of
transformers, Burtsev & Sapunov (2020) introduce mem-
ory tokens that are processed in addition to sequence to-
kens, whereas Dai et al. (2019) (Transformer-XL) propose
to partition a long sequence to smaller segments and use
the activations of the previous segment in memory while
processing the current segment. Building on the latter, Rae
et al. (2019) propose to store activations from prior seg-
ments in a compressed memory. However, these methods
do not restrict memory writes to be sparse and competi-
tive. Further, deploying a shared workspace to establish
coherence between different specialists as opposed to us-
ing all-pair communication has an added benefit, in that it
allows us to tackle the O(n2) complexity of self-attention.
This makes our work related to previous work on reducing
the computational complexity of dot product attention in
Transformers. Lee et al. (2019) introduce the ISAB module,
which maps between sets and comprises two dot-product
attention layers. In the first layer, a set of trainable parame-
ters are used as queries and the elements of the input set as
keys; in the second layer, the output of the first layer is used
as keys and the input set as queries. However, unlike in this
work, the intermediate states (corresponding to the output
of the first layer) are not maintained across layers. Long-
former (Beltagy et al., 2020) proposes to restrict attention
to a local receptive field, hence making complexity linear
(although at the cost of missing long-range dependencies).
The Routing Transformer (Roy et al., 2020) uses K-means
clustering to group together keys and queries and restricts at-
tention locally, leading to an overall complexity of O(n1.5).
Wang et al. (2020); Katharopoulos et al. (2020) proposed a
method to reduce the complexity of self-attention to linear
(with some additional differences) in sequence length, and
shows that the method achieves results on par with standard
Transformer models. We show that using the cognitively
inspired shared workspace, we can achieve better results
than standard Transformer models, while reducing the com-
plexity of self-attention to be linear in sequence length.

4. Experiments
Here we briefly outline the tasks on which we applied the
idea of the shared workspace and direct the reader to the
appendix for full details on each task and details on hyper-
parameter settings for the model. The experiments have the
following goals: (a) Demonstrate that the use of the shared
workspace can improve results on a wide array of challeng-
ing benchmark tasks, with the goal of demonstrating the
practical utility and breadth of the technique. (b) Show that
the shared workspace addresses coherence between differ-
ent specialists by achieving improved performance without
requiring all pairwise interactions.
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4.1. Making sense of the visual input.

Using a shared workspace introduces a bottleneck in shar-
ing of information between specialists. Since the size of
the workspace is limited and generally much lower than
the number of specialists, there is a limit to the amount
of information that can be exchanged among specialists.
We hypothesize that mediating communication through a
limited capacity workspace should encourage the model
to look at relevant information that is important for the
downstream objective. We test this hypothesis on a set of
visually challenging benchmarks. For our experiments, we
use either Transformers or RIMs as a backbone. We first
experimented with a 4-layered Transformer with shared pa-
rameters across layers as a backbone architecture, as in uni-
versal transformers (Dehghani et al., 2018). We replace the
pairwise interactions (self-attention) in the baseline Trans-
former with a shared workspace as described in the previ-
ous section. We consider variants of Transformers based
on different subsets of important properties. Transformers
[TR]: Self-attention based multi-layer architecture (Vaswani
et al., 2017) with shared parameters across layers. Sparse
Transformers [STR]: Transformers with sparse factoriza-
tions of the attention matrix (Child et al., 2019). High
Capacity Transformers [TR+HC]: Same as TR but with dif-
ferent parameters across layers. Transformers with Shared
Workspace with soft-competition [TR+SSW]: Transformers
with different positions competing with each other to write
in shared workspace using soft-competition. Transformers
with Shared Workspace with top-k competition [TR+HSW]:
Transformers with different positions competing with each
other to write in shared workspace using top-k competition.
For a more detailed description of all the tasks described
below, we ask the reader to appendix section D.

Detecting Equilateral Triangles. To test our hypothesis in
an easy to visualize and understand setting, we use a simple
toy task where the model is tasked with detecting equilateral
triangles in images (Ahmad & Omohundro, 2009). Each
image is of size 64 × 64 and contains 3 randomly placed
clusters of points. For equilateral triangles, the midpoints
of these clusters are equidistant from each other. This is
a binary classification task where the model has to predict
whether the three given clusters form an equilateral triangle
or not. To feed an image into a Transformer, we follow the
same methodology as used in vision Transformers (Doso-
vitskiy et al., 2020). We first divide an image into equal
sized 4× 4 patches and treat each patch as a different input
position of the Transformer.

To solve this task correctly, the model only needs to attend
to relevant information i.e., to patches that contain the clus-
ter of points. Therefore, using a limited capacity shared
workspace should be useful here. Our results (presented in
figure 3) confirm our hypothesis. We can see that Trans-
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Model
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Figure 3. Detecting Equilateral Triangles. Here, we compare the
performance of the Transformers with shared workspace to other
Transformer baselines. Here, we plot the test accuracy for each
model.

formers with shared workspace attention converge much
faster and reach higher accuracy as compared to the base-
line Transformer.

CATER: Object Tracking. Cater is a spatio-temporal rea-
soning video dataset introduced in Girdhar & Ramanan
(2019). Each video contains 3D objects organized in a
6× 6 grid. Each object affords certain actions that can be
performed on them. These actions result in movement of
the concerned objects and change in their positions. Some
of these actions include: rotate, pick-place, slide, contain.
Throughout the duration of the video, a number of these
actions are performed to get the final state of the grid. Note
that only a single object undergoes an action, at any instant.
The task that we focus on here is called localization. In
this task, the goal is to predict the location of the target
object in the final frame. In this case the target object is
called a snitch. The snitch as well as the other objects move
across the 6 × 6 grid. In some scenarios, the snitch may
be covered by other objects hence hiding it from the view.
In such cases, tracking the movement of the snitch across
frames becomes essential. Therefore, capturing long-range
temporal dependencies is essential to solve this task.

We first sample frames from the video at a sampling rate
S, in this case we use S = 6. We pass each sampled
frame through a resnet block to get a sequence of feature
representations: {f1,f2,f3, . . . ,fT }. We then pass this
sequence through a Transformer. This task is setup as a
classification task where we have to predict which cell in
the 6× 6 grid contains the snitch in the final frame.

The information exchange limit enforced by the limited
capacity of the shared workspace should be useful here as
well. For CATER, in some frames the snitch is not visible as
it is covered by other objects. Therefore, ideally the model
only needs to attend to frames in which the snitch is visible.
Additionally, if the snitch is visible throughout the video in
all frames, then to accurately predict the final position of
the snitch, the model only needs to attend to the final frame
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Model Top-1 % Top-5 %

STR 70.6±0.08 87.33±0.06

TR 70.83±0.44 87.8±0.08

TR + HC 70.17±0.31 88.33±0.2

TR + HSW (OURS) 71.07±0.04 88.6±0.49

TR + SSW (OURS) 71.33±0.34 88.3±0.05

Table 1. Comparison on CATER Object Tracking. Here, we
compare the Top-1 and Top-5 accuracy of Transformers with
shared workspace and Transformers with self-attention. We can
see that Transformers with a shared workspace outperform those
with pairwise self-attention.

0 20 40 60 80 100
Epoch

50

60

70

80

90

100

Ac
cu

ra
cy

Model
TR + HSW (Mem. slots = 8)
TR + HC

(a) Non-Relational Questions

0 20 40 60 80 100
Epoch

40

50

60

70

80

90

Ac
cu

ra
cy

Model
TR + HSW (Mem. slots = 8)
TR + HC

(b) Relational Questions

Figure 4. Comparison on Sort-of-CLEVR relational reasoning.
Speed of convergence for relational and non-relational questions
in the sort-of-clevr dataset. We can see that the proposed model
converges much faster than the baseline in both cases.

of the video and can completely ignore the initial frames.

The results for this task are presented in table 1. We also
experimented with both soft competition TR+SSW and
hard competition TR+HSW, with only k = 5 specialists
writing into the shared workspace. We can see that models
with a shared workspace outperform those with pairwise
multihead attention thus confirming our hypothesis about
the benefits of a shared workspace for this task.

Relational Reasoning : Sort-of-CLEVR. In relational rea-
soning, the model is tasked with answering questions about
certain properties of various objects and their relations with
other objects. The model is presented with an image and a
question for that image. This task has a clear sparse struc-
ture as in order to answer the questions correctly, it needs to
only reason about a specific subset of objects that the ques-

tion mentions. For this task, we use the Sort-of-CLEVR
dataset (Santoro et al., 2017).

Each image in Sort-of-CLEVR is a size 75× 75 image con-
taining 6 randomly placed geometrical shapes of 6 possible
colors and 2 possible shapes. Each image comes with 10
relational questions and 10 non-relational questions. Non-
relational questions only consider properties of individual
objects. For example, what is the shape of the red object?
is a non-relational question. On the other hand, relational
questions consider relations among multiple objects. For
example, what is the shape of the object closest to the red
object? is a relational question.

The input to the model consists of the image and the corre-
sponding question. We first obtain a sequence of equal-sized
patches for the image as in vision Transformers (Dosovitskiy
et al., 2020). We concatenate the resulting patch sequence
with the representation of the question and pass the com-
bined sequence through the Transformer. Sort-of-CLEVR
has a finite number of possible answers, hence this task is
setup as a classification task.

We present the results for this task in figure 4. We observe
that the Transformers with the shared workspace converge
faster and outperform the baselines for relational as well
as non-relational questions. The superior performance of
shared memory can be attributed to the inherent sparsity
of this task. For instance, in non-relational questions, the
model only needs to attend to a single object referenced in
the question to answer it correctly and relational questions
only consider a few subset of objects in the image, thus
sparsity is helpful for both these types of questions. There-
fore, the limited capacity of the shared workspace forces the
model to attend to only relevant information.

4.2. Shared Workspace for Physical Reasoning task.

In this task, the trajectory of a number of objects interacting
through elastic collisions has to be predicted. In order to
solve this task, a coherent picture of where which objects
will collide needs to be established by the learner. We use
the bouncing-ball dataset from Van Steenkiste et al. (2018).
The dataset consists of 50,000 training examples and 10,000
test examples showing ∼50 frames of either 4 solid balls
bouncing in a confined square geometry, 6-8 balls bouncing
in a confined geometry, or 3 balls bouncing in a confined
geometry with a random occluded region. In all cases, the
balls bounce off the wall as well as off one another. We
train baselines as well as the proposed shared workspace
extension (e.g., RIMs + SW). As shown in Fig. 5, we
study the performance of the proposed model compared
with LSTM, RIMs and RMC. The first 10 frames of ground
truth are fed in and then the system is rolled out for the
next 35 time steps. During the rollout phase, the proposed
method performs better than the baselines in accurately
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Figure 5. Bouncing ball motion: Prediction error comparison of
the proposed method, LSTM, RIMs and RMC baseline. Given 10
frames of ground truth, the model predicts the rollout over the next
35 steps. Here, we present the BCE for the 30th frame and 45th
frame. The proposed SW extension performs better than other
baselines in accurately predicting the dynamics, with an increasing
advantage as the number of unrolled steps (30 vs 45) and balls ((a)
vs (b)) increases. Results are an average over 5 random seeds.

predicting the dynamics of the balls as reflected by cross
entropy (CE). For more details, we ask the reader to refer to
appendix section F.

4.3. Shared Workspace for Multiagent Starcraft World
Modelling.

The SC2 domain (Samvelyan et al., 2019) is a multi-agent
reinforcement learning benchmark, wherein teams of hetero-
geneously typed units must defeat a team of opponents in
combat. Each unit type has its own characteristics, e.g. max-
imum health, shields, weapon abilities (cool-down, damage
per second, splash damage, etc), and strengths (vulnerabili-
ties) against (towards) other unit types, making the world-
modeling more challenging.

Task Description. Given observations Oa
t from a team of

cooperating agents indexed by a and with positions xa
t and

actions ua
t , predict the observationOq

t′ that would be made
by an agent q at time t′ = t + 1 if it were previously at
position xq

t . In this environment, (a) all agents a have a well-
defined and known location xa

t (at time t), (b) the agents’
actions ua

t are local, in that their effects propagate away
(from the agent) only at a finite speed, (c) the observations
are local and centered around agents, in the sense that the
agent only observes the events in its local vicinity, i.e.,Oa

t .

Dataset (Rahaman et al., 2020). The observationsOa
t and

actions ua
t are both multi-channel images represented in

polar coordinates centered around the agent position xt
a.

The field of view (FOV) of each agent is therefore a circle of
fixed radius centered around it. The channels of this multi-
channel images correspond to (a) a binary indicator marking
whether a position in FOV is occupied by a living friendly
agent (friendly marker), (b) a categorical indicator marking
the type of living units at a given position in FOV (unit-type

Table 2. Multiagent Starcraft World Modelling: Performance
metrics on 1s2z and 5s3z The metrics are: unit-type macro F1
score (UT-F1), friendly-marker F1 score (FM-F1), HECS Negative
Mean Squared Error (NMSE) and Log Likelihood (LL). (larger
numbers are better) . Results are average over 3 random seeds.

UT-F1 FM-F1 NMSE LL

1s2z task
RIMs 0.5693±0.02 0.8135±0.03 -0.0053 -0.0532±0.004
LSTM 0.6267±0.03 0.8464±0.02 -0.0040 -0.0382±0.006

RIMs + SW 0.6867±0.02 0.8532±0.01 -0.0034 -0.0321±0.004

5s3z task
RIMs 0.453±0.01 0.6935±0.01 -0.028 -0.154±0.01

LSTM 0.497±0.03 0.7123±0.02 -0.013 -0.125±0.02

RIMs + SW 0.538±0.01 0.7402±0.02 -0.013 -0.119±0.01

marker), and (c) four channels marking the health, energy,
weapon-cooldown and shields (HECS markers) of all agents
in FOV. With a heuristic, we gather a total of 9K trajectories
({xa

t ,O
a
t ,u

a
t }Aa=1)100t=1 spread over three training scenarios,

corresponding to 1c3s5z2, 3s5z and 2s5z in Samvelyan
et al. (2019). In addition, we also sample 1000 trajectories
(each) from two OOD scenarios 1s2z and 5s3z.

Evaluation Criteria. We report the F1 scores for binary
friendly markers, multi-class (macro) F1 score for unit-type
markers, negative mean squared error for HECS markers.

Results: Table. 2 shows the performance of the RIMs with
workspace as compared with the regular RIMs with self-
attention (Goyal et al., 2019) (1200 hidden units, and 12
modules), as well as with LSTM network (1200 hidden
units). As shown in Tab. 2, RIMs with pairwise interactions
between different specialists perform poorly on this task.
RIMs where a shared workspace is used as a communication
channel are able to achieve much better results as compared
with LSTMs as well as regular RIMs, thus showing the va-
lidity of the proposed idea to establish coherence between
different specialists. For more details regarding the architec-
ture and details about baselines and the proposed method,
we ask the reader to refer to appendix, section G.

5. Conclusion
Inspired by cognitive neuroscience global workspace the-
ories, we have proposed a shared workspace model for
establishing coherence among modular neural specialists
while exchanging information. We show that using a limited
capacity shared workspace as a bottleneck for mediating
communication among specialists results in better perfor-
mance across a wide range of visual reasoning benchmarks
as compared with the pairwise interactions typically used in
self-attention schemes. All communication occurs through
key-value attention, which ensures that the specialists are
interchangeable, and that any specialist can pass informa-

2Here, the code 1c3s5z refers to a scenario where each team
comprises 1 colossus (1c), 3 stalkers (3s), and 5 zealots (5z).
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tion to the workspace in form that others can learn to in-
terpret. Experiments on prediction and visual reasoning
tasks highlight the advantages brought by the conjunction
of modularity and the shared workspace. The proposed
model combines several key properties: knowledge and ex-
pertise is divided among specialists, they compete to post
new contents to the workspace, and after being updated, the
shared workspace is accessible to all specialists for their
own updates.
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Algorithm 1 Shared Workspace integration with RIMs
Input: Current sequence element, xt and previous state of the specialist, {ht−1,k}, for k ∈ {1, . . . , ns} and structure of memory as a
matrix M with row wise compartmentalized memories, where mi refers to the state of slot i (total number of slots is nm).

Step 1: Process image by position p with fully convolutional net
• cp = [CNN(xt)]p
• zt = [cp ep] (concatenate encoding of position to CNN output)

Step 2: Specialists compete to be selected to update the workspace based on current input
• qk = ht−1,kW

q

• sk = softmax
(
qkκ√
de

)
,where κ = (ztW

e)T

• Construct a set Ft which contains the indices of the nsel specialists that have the largest sk

• h̄t,k =

{
gk (skztW

v, ht−1,k) k ∈ Ft ,

ht−1,k k /∈ Ft ,

• ak = skztW
v ∀ k ∈ Ft (Scaled Dot Product Attention)

Step 3: Activated specialists write in a shared workspace
• Q̃ = MW̃ q

• R = [M ;A] whereA is the matrix whose rows are the ak∀k ∈ Ft

• M ← softmax
(
Q̃(RW̃ e)T√

de

)
RW̃ v

Step 4: Broadcast of information from the shared workspace
• q̂k = h̄t,kŴ

q ∀k ∈ {1, . . . , ns}
• sk,j = softmax

(
q̂kκ̂j√

de

)
where κ̂j = (mjŴ

e)T ∀k ∈ {1, . . . , ns}, j ∈ {1, . . . , nm}

• ht,k = h̄t,k +
∑

j sk,j v̂j where v̂j = mjŴ
v ∀k ∈ {1, . . . , ns}

Appendix
A. Pseudo Codes
Alg. 1 shows the integration of shared workspace with RIMs (Goyal et al., 2019). We replace the direct module to module
interaction via attention in RIMs, with shared workspace. Specialists compete to write in the shared workspace, and the
contents of the workspace are broadcasted to all the specialists.

Alg. 2 shows the integration of the shared workspace with TIMs (Lamb et al., 2021). Again we replace the direct module to
module communication in TIMs, with a shared workspace.

B. Hyperparameters
Table 3 lists the different hyper-parameters.

B.1. Integration with RIMs

RIMs with shared workspace has three set of parameters:

• Parameters corresponding to Input attention Parameters for the attention for the k-th specialist θk =
(W q

k ,W
e,W v) corresponding to query, keys, and values respectively. Each specialist has different query param-

eters but share the same keys and values (which are function of the input). In the table it corresponds to the inp keys,
inp values, inp heads respectively.

• Writing in a shared workspace: Parameters corresponding to the writing in the memory. Here, we follow the
similar mechanisms as in RMC(Santoro et al., 2018), where shared workspace is seen as a Matrix with row wise
compartmentalized memories (i.e slots) i.e W̃ q, W̃ e, W̃ v. In the table it corresponds to number of memory slots,
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Algorithm 2 Shared Workspace integration with TIMs
Notation: Consider hl as the output of the lth transformer layer. Let sequence length of original input be T and embedding dimension
of transformer be D. Let the transformer be composed of nb mechanisms and memory be denoted as a matrix M with row wise
compartmentalized memories, where mi refers to the state of slot i (total number of slots is nm). Consider hk

l = hl[:, (k − 1)D/nb :
kD/nb] to be the hidden state of mechanism indexed k at layer l.

Initialization: Convert the raw input X ∈ RT×vocab_size to h0 = positional_encoding + Embedding(X) where h0 ∈ RT×D .
Initialize memory matrix M which remains common for all layers in the transformer.

Input to the layer l: hl−1 having shape RT×D

Step 1: Mechanisms compete to be selected to update the workspace based on the input they receive from the previous layer
• W c ∈ RD/nb×1

• ck = hk
l−1W

c
k ∀k ∈ {1, . . . , nb}

• c = softmax(concat(c1, .., cnb)), c ∈ RT×nb

• For each time step t in the original sequence of length T , we use the soft score c to select the top nsel mechanisms which would
self-attend and write to the memory. Hence generating setFt which stores the indices of nsel mechanisms for position t ∈ {1, 2, ..., T}.
Also construct c∗k ∈ RT×D/nb where

c∗k[t, :] =

{
c[t][k] k ∈ Ft ,

0 k /∈ Ft ,

Step 2: Selected mechanisms self-attend and update their hidden state
• residualk = hk

l−1

• h̄k
l = c∗k � SelfAttention(hk

l−1) + residualk ∀k ∈ {1, . . . , nb}

Step 3: Selected mechanisms write on the shared workspace
• Memory matrix M was last modified by mechanisms of layer l − 1
• Let ak = c∗k � h̄k

l and a = concat(a1, ..,anb). Absorb the first dimension (corresponding to position in the sequence) in the batch
dimension by reshaping a. Perform the same steps as in algorithm 1.
• Q̃ = MW̃ q

• R = [M ;A] whereA = aW v

• M ← softmax
(
Q̃(RW̃ e)T√

de

)
RW̃ v

Step 4: Broadcast of information from the shared workspace
• Reshape the new memory to bring back the sequence dimension. Perform the same steps as in algorithm 1.
• q̂k = h̄k

l Ŵ
q ∀k ∈ {1, . . . , nb}

• sk,j = softmax
(
q̂kκ̂j√

de

)
where κ̂j = (mjŴ

e)T ∀k ∈ {1, . . . , nb}, j ∈ {1, . . . , nm}

• hk
l = h̄k

l +
∑

j sk,j v̂j where v̂j = mjŴ
v ∀k ∈ {1, . . . , nb}

number of memory heads, size of attention head, key size and number of mlp layers in attention. These are the same
hyper-paramter as in RMC (Santoro et al., 2018). We tried two different set of hyper-parameters (a) where we only
have a single slot and (b) where we have 4 slots.

• Broadcast of Information from the shared workspace: In this process, the information in the workspace gets
broadcasted to all the specialists such that each specialist produces a query, and the keys and values are a function
of the memory state. Each specialist gets information from the memory according to its query, and this information
is used to update the state of each specialist in a residual fashion. This corresponds to the parameters of Ŵ v, Ŵ q,
Ŵ e in the table i.e memory attention heads, memory attention keys, and memory attention values. We did not do any
hyper-parameter search for these hyper-parameters.

Resources Used:

• For vision tasks like Sort-of-clever, Equilateral triangle, CIFAR classification, it takes about 6 hours to run 200 epochs
on V100 (32G) GPU.

• It takes about 2 days to train the proposed model on bouncing ball task for 100 epochs on V100 (32G) GPU. We did
not do any hyper-parameter search specific to a particular dataset (i.e 4Balls or 678Balls or Curtain Task). We ran the
proposed model for different number of memory slots (i.e 2/4/8) for all the different datasets.
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Equilateral Triangles

Non Equilateral Triangles

Figure 6. A demonstration of the detecting equilateral triangles task.

• For Starcraft task, it takes about 5 days to train on V100 (16G) GPU with batch size of 4.

C. Implementation Details
Writing Information in the shared workspace. While writing information to the shared workspace, we update the
workspace using a gating mechanism as proposed in (Santoro et al., 2018). The gating mechanism consists of input and
forget gates. Let M t−1 and M t be the previous and updated memory matrix respectively. Let M be the result of the
attention mechanism as described in step 2 of section 2.1. LetX1...ns

be the input to ns specialists. The gating mechanism
can be formulated as follows.

X̄ =
1

ns

ns∑
i=1

relu(Xi ×W 1)

K = X̄ + tanh(M t−1)

I = sigmoid(KW I)

F = sigmoid(KW F )

M t = I × tanh(M) + F ×M t−1

Here, I and F indicate the input and forget gates respectively. Note thatW 1 is shared across all ns specialists.

D. Transformer Tasks
D.1. Detecting Equilateral Triangles

A demonstration of this task can be found in figure 6. We use images of size 64×64 for this task. Our training dataset consists
of 50000 examples and we evaluate on 10000 examples. We follow the same setup as vision transformers (Dosovitskiy et al.,
2020) for this task. We divide the image into patches of size 4× 4, this sequence of patches is fed as input to a 4-layered
transformer along with the CLS token which is used for classification. We set hidden dim to 256 and ffn dim to 512. For the
proposed model (TR+SSW, TR+HSW), We use a query and key size of 32, and value size of 64. We use 4 heads during
reading from and writing into the shared workspace which consist of 8 memory slots. For the baseline models (TR, TR +
HC, STR), we use query, key and value size of 64 and 4 heads. For training, we use a batch size of 64. We train the model
for 200 epochs using Adam optimizer with a learning rate of 0.0001. We anneal the learning rate using cosine annealing.
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Table 3. Generic Hyperparameters for the proposed model (for RIMs)

Parameter Value

Number of specialists (ns) 6
Size of each specialist 85
Number of memory slots (nm)
Optimizer Adam(Kingma & Ba, 2014a)
learning rate 1 · 10−4

batch size 64
Inp keys 64
Inp Values 85
Inp Heads 4
Inp Dropout 0.1
Number of memory slots 4
Number of memory heads 1
Size of attention head 32
Key size 32
Number of MLP layers in Attention 3
Gate Style ’unit’
Memory Attention Heads 4
Memory Attention keys 32
Memory Attention Values 32

D.2. Sort-of-clevr

Figure 7 shows a sample from this dataset. The images in this dataset are of size 75× 75. Each question is encoded into 11
bits. The first 6 bits indicate color, the next 2 bits indicate question type (relational or non-relational), and the remaining
3 bits indicate question subtype (according to figure 7). We use a 4-layered transformer for this task with hidden dim set
to 256 and ffn dim set to 512. For the proposed model (TR+SSW, TR+HSW), We use a query and key size of 32, and
value size of 64. We use 4 heads during reading from and writing into the shared workspace which consists of 8 memory
slots. For the baseline models (TR, TR + HC, STR), we use query, key and value size of 64 and 4 heads. We encode the 11
bit question into a 256 dimensional vector representation and concatenate it with the sequence of 15× 15 sized patched
obtained from the image. We use the representation corresponding to the CLS token for classification. We train the model
using cross-entropy loss. We use a batch size of 64 and train the model for 100 epochs. We use Adam optimizer with a
learning rate of 0.0001 for training.

Figure 7. A sample from the sort-of-clevr dataset.
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D.3. CATER: Object Tracking

Each CATER video consists of about 300 frames of size 224× 224. We first sample frames at a sampling rate of 6 which
results in 50 frames. From these 50 frames, we stack 5 consecutive frames together and pass each stack through a 18 layered
resnet. The corresponding sequence of 10 frames is passed as input to the transformer. We use a 6-layered transformer with
hidden dim set to 512 and ffn dim set to 2048. For the proposed model (TR+SSW, TR+HSW), We use a query and key size
of 32, and value size of 64. We use 8 heads during reading from and writing into the shared workspace which consists of 8
memory slots. For the baseline models (TR, TR + HC, STR), we use query, key and value size of 64 and 8 heads.

D.4. MultiMNIST Generation

Table 4. Hyperparameters for MultiMNIST Task

Parameter Value

Common Parameters

Optimizer Adam(Kingma & Ba, 2014a)
Learning rate 1 · 10−3

Batch size 12
Number of attention heads 8

TR

Size of transformer layer 256

TIMs

Number of mechanisms 4
Size of mechanism 48

TIMs+SW

Number of mechanisms 4
Size of mechanism 40
Number of memory slots 2
Size of memory slots 160
Memory Attention Heads 8
Gate Style ’unit’
Number of MLP layers in Attention 2

In this task, we train an Image Transformer (Parmar et al., 2018) (pixel-by-pixel, raster-order generative model) for next
pixel prediction task on the “MultiMNIST dataset”

Each 32× 32 image in this dataset is made up of four randomly selected (and augmented) MNIST digits (resized to 32× 8)
placed side-by-side as shown in figure 8. The digits themselves are selected independently of one-another.

The main aim of creating such a task is to observe the working of independent mechanisms in architectures such as TIMs
(Lamb et al., 2021). Each image in the MultiMNIST dataset can be broken down into different sets of independent spatial
components. Since the digits which make up the image are independently selected, the joint distribution of pixel intensities
in any one of the four sections of the image is statistically independent of the pixel intensities in any other section of the
image. Moreover each section of the image can be further broken down into independent spatial components: one that
pertains to the background and one that pertains to the foreground.

It is expected that a monolithic architecture (having a single computational unit) would have to devote a significant portion
of its training to learn the statistical independence between the different constituents of the image. On the other hand,
architectures made up of sparsely interacting independent mechanisms have a natural way of capturing such statistical
independence. A division of labour where each mechanism is focused on the generation of a distinct independent constituent
of the image should allow for better generalization on the test set. Once the generation of a constituent is completed, the task
can be handed over to some other mechanism based on current position in the image.
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Table 5. MultiMNIST Generation Task: We report cross-entropy loss between the generated pixel values and the true pixel values on
the test set of MultiMNIST Generation Task (smaller numbers are better)

Model Loss

TR 0.000058
TIMs (4 mechanisms) 0.000050
TIMs+SW (4 mechanisms) 0.000042

For this experiment we train a standard transformer with shared parameters across all layers (denoted by TR), TIMs (Lamb
et al., 2021) with 4 mechanisms, and a modified version of TIMs with 4 mechanisms where the pair-wise communication
between the mechanisms is replaced by communication via a shared workspace (denoted by TIMs+SW).

Training. We follow the minGPT Image Transformer setup (Karpathy, 2020) for our experiments. All three of the
configurations have 8 layers, 8 heads for multi-headed attention and use the exact same parameter initialization and base
architecture. We train all three of the models for 20 epochs.

In the TR model, all of the 8 monolithic layers share the same set of parameters. In TIMs and TIMs+SW, the first two
layers are the standard monolithic layers having shared parameters. The middle four layers in both of these architectures are
modular layers with four mechanisms. These four layers share the same set of parameters. In the case of TIMs+SW, the
four mechanisms in these layers communicate via a shared workspace (having 2 memory slots). This shared workspace is
common for all four middles layers and is absent in TIMs where the mechanisms communicate via pair-wise competition as
proposed in the original paper. TIMs and TIMs+SW architectures are concluded by two more monolithic layers which again
share the same parameters.

For all three models to have comparable number of parameters, we chose the transformer embedding dimension to be 256
for TR model, 192 for TIMs model and 160 for TIMs+SW model. In TIMs and TIMs+SW, the embedding dimension is
divided equally among the four specialists. Each memory slot in the shared workspace of the TIMs+SW model has a 160
dimensional embedding and the model uses four heads to perform read and write operations on the shared workspace. Total
number of parameters for all three architectures lie between 1M and 1.8M.

Results. We observe the best cross-entropy loss in 20 epochs on the test set of the MultiMNIST dataset for the next pixel
prediction task in the table 5. We further plot the sixth layer “mechanism activation score” of TIMs and TIMs+SW while
generating the first four images of the test set in the best epoch (shown in figure 9). We call these plots as Mechanism
Activation Maps.

From left to right, each Mechanism Activation Map is divided into four sections of size 32× 32 and each section belongs to
a unique mechanism. A mechanism which is activated during the generation of a particular pixel in a test image will have a
non-zero activation value at the same location in its section of the activation map. These activation scores are produced as a
result of a soft competition between different mechanisms and the mechanism with higher score will have more control over
the state update of the transformer. The degree of activation is highlighted by the pixel intensities in these plots.

It is clear from these plots that the TIMs model is unable to devise an ideal division of labour between its mechanisms. Most
of the computation is handled by the second mechanism in all four images. Upon closer look, one can notice that there are
four dark stripes present in the activation map of the second mechanism and four white stripes present in the activation map
of the fourth mechanism at the same location which suggests that the model has somewhat understood the boundaries of the
four sections of the image. Yet most of the computation is still handled by the second mechanism, even at the boundaries of
the four sections in the image, indicating that the model is unable to properly utilize three of its four mechanisms.

Using a shared workspace on the other hand shows a drastic improvement in the division of labour among different
mechanisms. The second mechanism gets activated only near the center of each of the four sections of the image. This is
intuitive since most of the digits in the images of this dataset lie near to the center of their section. Therefore it seems that
the second mechanism is concerned with the generation of the digits themselves.

Most interesting are the plots of mechanisms 3 and 4. It seems that the model has divided the non-digit area in the image
into two parts, one which marks the boundary between adjacent sections and one which marks the top and bottom of the
image. This indicates that 1) the model clearly understands the boundaries between different sections of the image 2) the
model understands that the top and bottom portions of each section function similarly since it is highly unlikely to find a
digit there irrespective of which section it is.
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Figure 8. A randomly selected batch of 16 images from the MultiMNIST generation dataset (4 rows and 4 columns)

(a) Mechanism Activation Maps for
TIMs

(b) Mechanism Activation Maps for
TIMs+SW

Figure 9. Mechanism Activation Maps for TIMs and TIMs+SW

Further, the activation maps in TIMs+SW are almost black and white, which means that at a given position, the computation
is single handedly completed by a single mechanism. This indicates that by using a shared workspace, different mechanisms
become specialists of different parts of the image. Such a case was not possible in TIMs suggesting that global-level com-
munication is crucial for allowing the mechanisms to specialize. The losses also show that that global-level communication
allows for a mixture-of-experts to generalize better.

E. Using Workspace for language Modelling
We train our models on the WikiText-103 dataset by posing a language modeling problem. The dataset is divided into train,
test and validation sets which are composed out of 28,475, 60 and 60 articles respectively. The total number of tokens in the
train set is more than 103 million, hence the name of the dataset. This dataset retains numbers, punctuation and case.

Training. We train our models for 15 epochs for the next word prediction task on the WikiText-103 dataset and report the
perplexity on the validation set. We show the results using TIMs (Lamb et al., 2021) with 4 mechanisms and TIMs+SW
with 4 mechanisms (where we replace the pairwise communication in TIMs with communication via a shared workspace
like in the MultiMNIST experiment). We modify the FAIRSEQ (Ott et al., 2019) transformer language model class for all of
our experiments.

For TIMs+SW, we train and test two different variants: TIMs+SSW uses soft attention to generate the activation scores of
competing independent mechanisms whereas TIMs+HSW uses top-k attention with k=2.

Since in this test, our aim is to compare the performance of the two models for the language modeling task, the architectures
are only made up of a transformer decoder. In both of the models, there are 8 transformer decoder layers divided into 3 sets.
The first 2 layers are standard monolithic decoder layers which share the same parameters. The next 4 layers are modular
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layers (TIMs layers or TIMs+SW layers depending on the model choice). These layers also share the same parameters
among themselves. The last 2 layers are again standard monolothic decoder layers, both sharing the same parameters.

The inputs to the network are 1024 dimensional word embeddings, input to a transformer layer of dimension 1024 and feed
forward dimension of 2048.

Both of the networks have 8 attention heads with head dimension of 128. The total transformer layer size of 8× 128 = 1024
is equally divided among the four mechanisms. In the case of TIMs, these mechanisms (in layers 3,4,5) interact via pair-wise
communication, whereas in TIMs+SSW and TIMs+HSW, these mechanisms interact via a shared workspace. The shared
workspace has 2 memory slots, each 1024 dimensional, having 4 attention heads for reading and writing.

Table 6. Hyperparameters for WikiText-103 Language Modeling Task

Parameter Value

Common Parameters

Optimizer Adam(Kingma & Ba, 2014a)
Learning rate 5 · 10−4

Adam betas 0.99, 0.98
Weight decay 0.01
lr scheduler ‘inverse square root’
Max tokens per gpu 3078
Batch size multiple 8
Number of attention heads 8
Transformer layer size 1024
Number of Mechanisms 4
Update frequency 4
Number of warmup updates 4000
Starting Warmup lr 1 · 10−7

TIMs+SSW

Number of memory slots 2
Size of memory slots 1024
Memory Attention Heads 4
Gate Style ’unit’
Number of MLP layers in Attention 3
top-k competition False

TIMs+HSW

Number of memory slots 2
Size of memory slots 1024
Memory Attention Heads 4
Gate Style ’unit’
Number of MLP layers in Attention 3
top-k competition True, k=2

Results. We plot the perplexity (per epoch) on the validation set. All models have comparable number of parameters
(within a 10% difference). We note that TIMs performs poorly on this dataset but adding shared workspace improves the
performance consistently. We also note that sparsity indeed helps as TIMs+HSW performed the best.

F. Bouncing Ball
The dataset consists of 50,000 training examples and 10,000 test examples showing ∼50 frames of either 4 solid balls
bouncing in a confined square geometry (4Balls), 6-8 balls bouncing in a confined geometry (678Balls), 3 balls bouncing in
a confined geometry with an occluded region (Curtain), or balls of different colors (Colored 4Balls) and (Colored 678Balls).



Shared Workspace

Figure 10. Per epoch validation perplexity for TIMs, TIMs+SSW, TIMs+HSW for wikitext-103 language modeling task

We trained baselines as well as proposed model for about 100 epochs. We use the same architecture for encoder as well as
decoder as in (Van Steenkiste et al., 2018). Hyper-parameters specific to the proposed architecture are listed in Tab. 3.

G. MultiAgent Starcraft
The Starcraft2 Environment we use is a modified version of the SMAC-Env proposed in Samvelyan et al. (2019) and built
on PySC2 wrapper around Blizzard SC2 API (Vinyals et al., 2017). Starcraft2 is a real-time-strategy (RTS) game where
players are tasked with manufacturing and controlling armies of units (airborne or land-based) to defeat the opponent’s army
(where the opponent can be an AI or another human). The players must choose their alien race3 before starting the game;
available options are Protoss, Terran and Zerg. All unit types (of all races) have their strengths and weaknesses against other
unit types, be it in terms of maximum health, shields (Protoss), energy (Terran), DPS (damage per second, related to weapon
cooldown), splash damage, or manufacturing costs (measured in minerals and vespene gas, which must be mined).

The key engineering contribution of Samvelyan et al. (2019) is to repurpose the RTS game as a multi-agent environment,
where the individual units in the army become individual agents4. The result is a rich and challenging environment where
heterogeneous teams of agents must defeat each other in melee and ranged combat. The composition of teams vary between
scenarios, of which Samvelyan et al. (2019) provide a selection. Further, new scenarios can be easily created with the
SC2MapEditor, which allows for practically endlessly many possibilities.

We build on Samvelyan et al. (2019) by modifying their environment to better expose the transfer and out-of-distribution
aspects of the domain by (a) standardizing the state and action space across a large class of scenarios and (b) standardizing
the unit stats to better reflect the game-defined notion of hit-points. We do not fix the number of agents in the environment
and allow for agents to dynamically enter or exit the environment.

Training. We adapt the encoder and decoder architecture to match the state representation by including circular convolutions.
Predicting the next state entails predicting images of binary friendly markers, categorical unit type markers and real valued
HECS markers. Accordingly, the loss function is a sum of a binary cross-entropy term (on friendly markers), a categorical
cross-entropy term (on unit-type markers) and a mean squared error term (on HECS markers). 5

3Please note that this is a game-specific notion.
4Note that this is rather unconventional, since each player usually controls entire armies and must switch between macro- and

micro-management of units or unit-groups.
5Note the training setup is same as in (Rahaman et al., 2020), and have been copied from the appendix of (Rahaman et al., 2020) (with

permission).
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G.1. Standardized State Space for All Scenarios

In the environment provided by Samvelyan et al. (2019), the dimensionality of the vector state space varies with the number
of friendly and enemy agents, which in turn varies with the scenario. While this is not an issue in the typical use case
of training MARL agents in a fixed scenario, it is not convenient for designing models that seamlessly handle multiple
scenarios. In the following, we propose an alternate state representation that preserves the spatial structure and is consistent
across multiple scenarios.

Instead of representing the state of an agent a with a vector of variable dimension, we represent it with a multi-channel
polar image Ia of shape C × I × J , where C is the number of channels and (I, J) is the image size. Given the radial and
angular resolutions ρ and ϕ (respectively), the pixel coordinate i = 0, ..., I − 1, j = 0, ..., J − 1 corresponds to coordinates
(i · ρ, j · ϕ) with respect to a polar coordinate system centered on the agent a, where the positive x-axis (j = 0) points
towards the east. Further, the field of view (FOV) of an agent is characterized by a circle of radius I · ρ centered on the agent
at 2D game-coordinates xa = (xa1 , x

a
2), to which the Starcraft2 API (Vinyals et al., 2017) provides raw access.

The polar image Ia therefore provides an agent-centric view of the environment, where pixel coordinates i, j in Ia can be
mapped to global game coordinates x = (x1, x2) in FOV via:

x1 = i · ρ cos [j · ϕ] + xa1 (1)
x2 = i · ρ sin [j · ϕ] + xa2 (2)

In what follows, we denote this transformation with Ta, as in Ta(i, j) = (x1, x2).

Now, the channels in the polar image can encode various aspects of the observation; in our case: friendly markers (one
channel), unit-type markers (nine channels, one-hot), health-energy-cooldown-shields (HECS, four channels) and terrain
height (one channel). As an example, let us consider the friendly markers, which is a binary indicator marking units that are
friendly. If we have an agent at game position (x1, x2) that is friendly to agent a, then we would expect the pixel coordinate
(i, j) = T−1a (x1, x2) of the corresponding channel in the polar image Ia to be 1, but 0 otherwise. Likewise, the value of I
at the channels corresponding to HECS at pixel position i, j gives the HECS of the corresponding unit6 at Ta(i, j). This
representation has the following advantages: (a) it does not depend on the number of units in the field of view, (b) it exposes
the spatial structure in the arrangement of units which can naturally processed by convolutional neural networks (e.g. with
circular convolutions).

Nevertheless, it has the disadvantage that the positions are quantized to pixels, but the euclidean distance between the
locations represented by pixels (i, j) and (i, j + 1) increases with increasing i. Consequently, this representation may not
remain suitable for larger FOVs.

Further, this representation is also appropriate for the action space. Given an agent, we represent the one-hot categorical
actions of all friendly agents in FOV as a multi-channel polar image. In this representation, the pixel position i, j gives the
action taken by an agent at at position Ta(i, j). Unfriendly agents get assigned an "unknown action", whereas positions not
occupied by a living agent are assigned a "no-op" action.

G.2. Standardized Unit Stats

At any given point in time, an active unit in Starcraft2 has certain stats, e.g. its health, energy (Terran), shields (Protoss) and
weapon-cooldown (for armed units). A large and expensive unit-type like the Colossus has more max-health (hit-points)
than smaller units like Stalkers and Marines7. Likewise, unit-types differ in the rate at which they deal damage (measured
in damage-per-second or DPS, excluding splash damage), which in turn depends on the cooldown duration of the active
weapon.

Now, the environment provided by Samvelyan et al. (2019) normalizes the stats by their respective maximum value, resulting
in values between 0 and 1. However, given that different units may have different normalization, the stats are rendered
incomparable between unit types (without additionally accounting the unit-type). We address this by standardizing stats
(instead of normalizing) by dividing them by a fixed value. In this scheme, the stats are scaled uniformly across all unit-types,
enabling models to directly rely on them instead of having to account for the respective unit-types.

6If health drops to zero, the unit is considered dead and the representation does not differentiate between dead and absent units.
7These stats may change with game-versions, and are catalogued here: https://liquipedia.net/starcraft2/Units_

(StarCraft).
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Model
Hyperparameter Value

Proposed Method (Shared Workspace)

Inp keys 64
Inp Values 128
Inp Heads 4
Inp Dropout 0.1
Number of memory slots 1
Number of memory heads 4
Size of attention head 64
Key size 32
Number of MLP layers in Attention 3
Gate Style ’unit’
Memory Attention Heads 4
Memory Attention keys 32
Memory Attention Values 32

RMC (Santoro et al., 2018)

Number of attention heads 4
Size of attention head 128
Number of memory slots 1
Key size 16

LSTM (Hochreiter & Schmidhuber, 1997)
Hidden size 2048

Table 7. Hyperparameters used for various models on the Starcraft2 task. Hyperparameters not listed here were left at their respective
default values.

G.3. Encoder and Decoder for Starcraft2

G.3.1. TRAINING

All models were trained using Adam (Kingma & Ba, 2014b) with an initial learning rate 0.0003. We use Pytorch’s (Paszke
et al., 2019) ReduceLROnPlateau learning rate scheduler to decay the learning rate by a factor of 2 if the validation loss
does not improve by at least 0.01% over the span of 5 epochs. We train all models for 200 epochs and finally select the
checkpoint with the lowest validation loss (i.e. we early stop). We train all models with batch-size 4 (Starcraft2).

G.3.2. STARCRAFT2 MODELS

The hyperparameters we used can be found in Table 7. Note that we only report models that attained a validation loss similar
to proposed method (Small LSTMs and RIMs fail to achieve that).
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Figure 11. Encoder and Decoder architectures for the Starcraft2 task.


